Section 7.2- Cube Roots
Concept \#21

Essential Question How is the cube root of a number different from the square root of a number?

When you multiply a number by itself twice, you cube the number.

To "undo" this, take the cube root of the number.

Use a cube root symbol to write the side length of each cube. Then find the Cube root. Check your answer.

EXAMPLE 1

a. Sample: $s=\sqrt[3]{343}=\sqrt[3]{7^{3}}=7$ inches

Check
$7 \cdot 7 \cdot 7=49 \cdot 7$
$=343 \mathrm{r}$

The edge length of the cube is 7 inches.
b. Volume $=27 \mathrm{ft}^{3}$

C. Volume $=125 \mathrm{~m}^{3}$

e. Volume $=\frac{1}{8} \mathrm{yd}^{3}$

A cube root of a number is a number that, when multiplied by itself, and then multiplied by itself again, equals the given number. A perfect cube is a number that can be written as the cube of an integer. The symbol $\sqrt[3]{ }$ is used to represent a cube root.

EXAMPLE 2

Find the cube root.

1. $\sqrt[3]{1}$
2. $\sqrt[3]{-343}$
3. $\sqrt[3]{-\frac{27}{1000}}$

Cubing a positive number and finding the cube root are inverse operations. You can use this relationship to evaluate expressions and solve equations involving cubes.

EXAMPLE 3

Evaluate the expression.

4. $18-4 \sqrt[3]{8}$
5. $(\sqrt[3]{-64})^{3}+43$
6. $5 \sqrt[3]{512}-19$
