Direct Variation - Guided Notes

- Direct variation is a special type of \qquad -.
- In order for two quantities to show direct variation, \qquad things must be true:
- They must be \qquad .
- The line formed must pass through \qquad .
- The equation for a relationship that is direct variation is \qquad .
- The number k is the \qquad , but is also sometimes referred to as the
\qquad .
- The number k can never be \qquad .
- Two quantities that show direct variation are also always \qquad .

Examples - Graph the points below and determine whether they show direct variation. If so, write an equation.
a.

b.

\boldsymbol{x}	0	2	4	6
\boldsymbol{y}	0	2	4	6

1. Explain what it means if x and y vary directly.
2. What point will be on every graph of a direct variation relationship?
3. Graph the ordered pairs in a coordinate plane. Do you think that graph shows that the quantities vary directly? Explain your reasoning.
a. $(-1,-1),(0,0),(1,1),(2,2)$
b. $(-4,-2),(-2,0),(0,2),(2,4)$

4. Tell whether x and y show direct variation. Explain your reasoning. If so, find k and write an equation.
a.

\boldsymbol{x}	1	2	3	4
\boldsymbol{y}	2	4	6	8

b.

x	-2	-1	0	1
y	0	2	4	6

c.

$$
\begin{array}{|c|c|c|c|c|}
\hline \boldsymbol{x} & -1 & 0 & 1 & 2 \\
\hline \boldsymbol{y} & -2 & -1 & 0 & 1 \\
\hline
\end{array}
$$

d.

\boldsymbol{x}	3	6	9	12
\boldsymbol{y}	2	4	6	8

